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The distribution of usual intakes of dietary components is important to individuals formulating food policy and to persons designing 
nutrition education programs. The usual intake of a dietary component for a person is the long-run average of daily intakes of that 
component for that person. Because it is impossible to directly observe usual intake for an individual, it is necessary to develop 
an estimator of the distribution of usual intakes based on a sample of individuals with a small number of daily observations 
on a subsample of the individuals. Daily intake data for individuals are nonnegative and often very skewed. Also, there is large 
day-to-day variation relative to the individual-to-individual variation, and the within-individual variance is correlated with the 
individual means. We suggest a methodology for estimating usual intake distributions that allows for varying degrees of departure 
from normality and recognizes the measurement error associated with one-day dietary intakes. The estimation method contains 
four steps. First, the original data are standardized by adjusting for nuisance effects, such as day-of-week and interview sequence. 
Second, the daily intake data are transformed to normality using a combination of power and grafted polynomial transformations. 
Third, using a normal components-of-variance model, the distribution of usual intakes is constructed for the transformed data. 
Finally, a transformation of the normal usual intake distribution to the original scale is defined. The approach is applied to data 
from the 1985 Continuing Survey of Food Intakes by Individuals and works well for a set of dietary components that are consumed 
nearly daily and exhibit varying distributional shapes. 
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1. INTRODUCTION 

The U.S. Department of Agriculture (USDA) has been re- 
sponsible for conducting periodic surveys to estimate food 
consumption patterns of households and individuals in the 
United States since 1936. Because dietary intake data from 
these surveys are used to formulate food assistance pro- 
grams, consumer education efforts, and food regulatory ac- 
tivities, it is crucial that appropriate methodologies be used 
in the analysis of these data. An important concept in an- 
alyzing food consumption data is usual intake, defined as 
the long-run average of daily intakes of a dietary compo- 
nent by an individual. From a statistical perspective, the 
usual intake of individual i is defined to be 

Yi = E{Yij i}, 

where Y is the intake of a dietary component on day j by 
individual i. This article outlines a methodology to estimate 
usual intake distributions of dietary components consumed 
on a nearly daily basis (e.g., nutrients, cholesterol, energy) 
from 24-hour recall dietary intake data. 

To assess usual intake, daily dietary intakes are often 
collected from individuals for a number of days. If an in- 
dividual's mean daily intake for a particular dietary com- 
ponent is used as an indication of his or her usual intake, 
then the variance of the mean intakes contains some within- 
individual variability and hence is greater than the variance 
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of the usual intakes. Other parameters of the distribution 
of mean intakes may also differ from the parameters of the 
distribution of usual intakes. Because of these problems, 
using the distribution of the mean of a few days as an esti- 
mate of the usual intake distribution can lead to erroneous 
inferences regarding dietary status. 

Nusser, Battese, and Fuller (1990) suggested a measure- 
ment error model, where the observed daily intake of an in- 
dividual is equal to the usual intake for that individual plus 
a measurement error, and the second and third moment of 
an individual's measurement errors are modeled as a func- 
tion of the individual's usual intake. Moment methods are 
used to estimate the parameters of a specified distribution 
(e.g., Weibull). Although this approach has the advantage 
of working with the data in the original scale, it requires 
several parametric assumptions and is difficult to implement 
for dietary components that exhibit extreme behavior, such 
as vitamin A. 

A second approach to estimating the usual intake distri- 
bution involves transforming the daily intakes so that the 
transformed values approximately follow a normal distribu- 
tion. The National Research Council (1986) recommended 
this approach and suggested a log transformation. As we 
explain in Section 2, log transformations or simple power 
transformations do not consistently produce transformed 
data that are normally distributed. 

The problem of estimating the distribution of usual in- 
takes can be formulated as the problem of estimating the 
distribution of a random variable that is observed subject 
to measurement error. Mendelsohn and Rice (1982) pre- 
sented an example of estimation of a density given observa- 
tions contaminated with normal error. Fan (1991), Stefanski 
(1990), and Stefanski and Carroll (1990, 1991) studied ker- 
nel estimation of an unknown density given observations 
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subject to independent additive measurement error with a 
known distribution. These authors also provided references 
to earlier work. Stefanski and Bay (1996) described a sim- 
ulation extrapolation estimation procedure for the cumula- 
tive distribution function of observations subject to additive 
normal errors. 

Our approach differs somewhat from the kernel estima- 
tors in that we assume that a transformation exists such that 
both the original observations and the measurement errors 
are normally distributed. The transformation is a grafted 
cubic equation fit to a power of the original data. This 
fitting can be considered a semiparametric version of the 
Lin and Vonesh (1989) procedure. It is also related to the 
spline approach for estimating the distribution function (see 
Wahba 1975 and Wegman 1982). The transformed daily in- 
take data are assumed to follow a measurement error model, 
and normal theory is used to estimate the parameters of the 
model. An estimated inverse transformation carries the nor- 
mal usual intake distribution back to the original scale and 
defines the distribution of usual intakes. The data set dis- 
cussed in this article and information on obtaining software 
to implement our procedure for estimating usual intake dis- 
tributions have been submitted to STATLIB. 

2. APPLICATION TO CSFII DATA 

2.1 The CSFII Data 

The data for this study are a subset of the data from 
the 1985 Continuing Survey of Food Intakes by Individuals 
(CSFII) conducted by the U.S. Department of Agriculture 
(1987). Daily dietary intakes were collected from women 
between age 19 and 50 and from the preschool children of 
the women at approximate 2-month intervals over the pe- 
riod April 1985-March 1986. Twenty-four-hour recall data 
were collected by personal interview for the first day and 
by telephone whenever possible for subsequent days. The 
sample was a multistage stratified area probability sample 
from the 48 coterminous states and was designed to be self- 
weighting. Because of the relatively high attrition rate for 
the 6-day sample, the USDA constructed a 4-day data set 
for analyses which consisted of the first day of dietary in- 
takes for all individuals who provided at least 4 days of 
data, plus a random selection of three daily intakes from 
the remaining 3, 4, or 5 days of available data. Weights 
were developed to adjust for nonresponse, and the analyses 
of this article are constructed on the weighted data. 

We analyze a subset of the 4-day data set containing di- 
etary intakes for 737 women age 25-50 who were respon- 
sible for meal planning within the household and who were 
not pregnant or lactating during the survey period. Because 
of the time separation of the observations, we assume the 
four observations on each individual to be independent ob- 
servations on that individual. The dietary components cal- 
cium, energy, iron, protein, vitamin A, and vitamin C were 
selected for analysis because of their nutritional importance 
and because of their varying distributional behaviors. 

The report of the National Research Council (1986) pro- 
vides a review of factors that influence observed daily in- 
takes. Some effects, such as errors in reported food intake 

and translation of food intake to nutrient intake, are not 
estimable from the data of our study. The effect of other 
factors, such as day of the week, season (month), interview 
method, and interview sequence, can be investigated. 

2.2 Method Overview 

We begin with a set of survey responses on daily intakes 
for n individuals. A subset of the individuals must report 
more than one daily intake. In our application, four days of 
intakes are available for each individual. Associated with 
each individual is a survey weight. 

The method for estimating usual intake distributions con- 
sists of several steps. First, the intake data are adjusted to 
remove nuisance effects, such as day of week and interview 
sequence, which are known to influence daily consumption 
levels. Because intakes recorded on the first sample day are 
believed to be the most accurate, the daily intakes for each 
sample day are adjusted to have a mean and variance equal 
to that of the first sample day (day 1). Other reference stan- 
dards, such as the grand mean, can be used. These initial 
adjustments are described in Section 2.3. 

The survey weights for the observations reflect the se- 
lection probabilities and are incorporated into the analy- 
sis by creating an "equal weight sample" from the origi- 
nal sample (Sec. 2.4). The empirical cumulative distribution 
function is constructed with the nk weighted observations, 
where k is the number of observations per individual. Then 
nk equal weight observations are defined to be the values 
of the inverse empirical cumulative distribution function 
associated with the nk equally spaced probability values, 
(nk)- 1(i-.5), i = 1, 2, ..., nk. 

The third step involves transforming the adjusted equal 
weight daily intake data to approximate normality using 
a combination of a power function and a grafted polyno- 
mial function. Some dietary components exhibit sizable de- 
viations from normality when transformed with a simple 
power function, and the grafted polynomial step provides 
the flexibility required to transform such components to ap- 
proximate normality. The semiparametric transformation is 
described in Section 2.5. 

In the fourth step, the parameters of the usual intake 
distribution are estimated in the transformed scale using a 
measurement error framework (Sec. 2.6). The measurement 
error model assumes that transformed daily intakes exhibit 
heterogeneous within-individual variances, and parameters 
of the error distribution are estimated. 

In the final step of the procedure, the estimated usual 
intake distribution in the original scale is obtained by ap- 
plying a back transformation to the normal scale estimated 
usual intake distribution (Sec. 2.7). The back transformation 
is estimated by modifying the nonlinear forward transfor- 
mation so that the back transformation is appropriate for 
the distribution of individual means. 

The steps in the procedure are designed to address the 
different features of daily dietary intake data, including nui- 
sance effects, survey weights, nonnormality, measurement 
error, and heterogeneous variances. The sequence in which 
the issues are addressed and the methods applied is the 
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product of our attempts to produce a procedure with ap- 
plicability to a wide range of data possessing these charac- 
teristics. 

2.3 Initial Adjustments 

We begin by adjusting the data for nuisance effects. The 
adjustment variables will vary with each study. In the case 
of the 1985 CSFII data, the daily intakes were examined us- 
ing least squares methods to determine whether day of the 
week, month, interview mode (telephone or in-person), and 
interview sequence (first, second, third, or fourth interview) 
effects were important. Month and interview sequence are 
confounded to a large degree, because the first interview 
was conducted at nearly the same point in time for all in- 
dividuals. 

Let Woij denote the observed intake for the ith individ- 
ual on the jth day in the interview sequence plus a constant 
equal to .0001 times the sample mean for the nutrient. This 
small amount is added to avoid problems in subsequent pro- 
cedures that depend on the derivative of a power of the data, 
which can be infinite when evaluated at zero. Consider the 
sample of n individuals, and let the ith individual have a 
weight wi, where En=- w2 = 1. 

Because dietary intake data are often skewed, a power 
transformation is applied to the data to make the distri- 
butions of the observed data more nearly symmetric. To 
simplify computations, -y is selected by a nonlinear least 
squares grid search procedure. The original observations 
Woij are used to estimate the power -y by minimizing the 
error sum of squares, 

n k 

EW, E (Uij 
_ 00 _ 

01Woj),(1 
i=1 j=1 

over a grid of values of -y, where Uij is the normal score for 
the ijth observation and f0 and i1 are estimated for each 
value of -y. The normal scores are computed as 

uij = [( 8)si; (3 nk )] (2) 

where @ is the standard normal distribution function and sij 
is the rank of the ijth observation. The grid of values for 
ty is [1, (1.5)-1, (2.0)-1, ..., (10)-1, log], where log denotes 
the natural logarithm and corresponds to -y = 0. 

Once the power has been selected, a model containing 
day of the week, interview mode, and interview sequence 
as additive classification variables is fit by weighted least 
squares to the power-transformed observations, WO7ij, where 
the weights in the regression are the sampling weights. In- 
terview mode is not significant for any dietary component. 
Day-of-week effects are significant for energy (p < .001) 
and protein (p < .05) intakes, primarily because of higher 
consumption on weekends for both dietary components. Se- 
quence effects (confounded with month effects) are signif- 
icant at the ce = .001 level for calcium, energy, iron, and 
protein intakes and are principally attributable to higher in- 

take levels on the first interview day versus the other 3 
days. 

Because of these results, data were adjusted for weekday 
and interview sequence effects. Let ZOij = W%ij represent 
the power-transformed observed intake for the ith individ- 
ual on the jth day. The ijth observation adjusted for week- 
day and interview sequence effects is Zij = Z( Zo.izoijl 
where Z0.1 is the mean of the power-transformed observed 
intakes for the first interview day and Z2ij is the predicted 
intake from the regression for the ith individual on the jth 
day. The ratio adjustment is used to reduce the probability 
that adjusted intake values are nonnegative. Should negative 
adjusted intakes occur, they are set equal to zero. The data 
are adjusted to the mean of the first interview day (rather 
than the grand mean), because the data are believed to be 
more accurate on the first interview day than on subsequent 
days. 

It is well established that the characteristics of responses 
in a repeated survey are a function of the time in sample 
at which a respondent is observed (see, e.g., Bailar 1975). 
Our initial regression adjustment modifies the data so that 
there is no sequence effect in the mean of the intake dis- 
tributions for the different days. Because of the possibility 
of other higher-order time-in-sample effects, we standard- 
ized the sample variance of transformed observations for 
the second, third, and fourth times in sample to the sample 
variance observed on the first day. The adjusted observa- 
tions in the original scale are defined by 

Y= [k-1 + S.-1S.l(Zij ( 3)j)l/3 

where i = 1,2,...,n individuals, j = 1,2,... ,k days, 
S= (nr-1)-1 EnZ (Zij-_.j)2, and .j =n-1Z En1 Zij . 
For a very few observations (fewer than four for every com- 
ponent), the transformation is modified near zero to guar- 
antee nonnegative adjusted data. 

The among- and within-individual standard deviations 
for the adjusted intakes in original units as defined in 
(3) are presented in Table 1. These statistics indicate that 
there is considerable within-individual variability relative 
to among-individual variability. The ratios of within- to 
among-individual variances are similar to those for com- 
parable dietary components reported by the National Re- 
search Council (1986). Vitamin A is unusual in that there 
is one very large observation and a few other large ob- 
servations that are responsible for the very large within- 
individual variance. Table 1 also contains the estimator of 
skewness, where skewness is defined as the third central 
moment divided by the cube of the standard deviation. The 
skewness coefficient indicates that for most dietary compo- 
nents, an assumption of normality is unreasonable. In addi- 
tion, analyses not shown here indicate that within-individual 
standard deviations are positively correlated with individual 
means. 

2.4 Incorporating Survey Weights 

Our estimation scheme is designed to handle samples 
with unequal weights. To apply classical equal-weight 
methods for the estimation of the components of variance 
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Table 1. Sample Moments for Adjusted Observed Intakes Y,j in (3) 

Ratio of within- to 
Dietary Among-individual Within-individual among-individual 

component Mean std. dev. std. dev. variances Skewness 

Calcium (mg) 622.3 253.9 319.1 1.58 1.35 
Energy (kcal) 1,683.4 450.4 585.1 1.69 1.10 
Iron (100 mg) 1,105.3 294.9 482.0 2.67 1.76 
Protein (10 g) 668.8 157.5 270.5 2.95 1.38 
Vitamin A (JLg/RE) 801.0 570.9 1,401.0 6.02 11.75 
Vitamin C (10 mg) 792.5 408.6 625.6 2.34 1.87 

NOTE: Data are adjusted for day-of-week and interview sequence effects. 

model, we use the empirical cumulative distribution func- 
tion to create an equal-weight sample from the adjusted 
unequal-weight sample. The first step in creating the equal- 
weight sample is to construct an empirical cumulative dis- 
tribution function from the nk observations, defined by 

n k 

Fy (a) W Zwi IY3a) 
i=1 j=l 

where Iyt, (a) is the indicator function with 

Iy3(a) = 1 if Yi* < a, 
= 0 otherwise. 

A continuous function, denoted by Fy(a), is created by 
connecting the midpoints of the rises in the steps of Fy (a). 
This function is used to define nk observations of an equal- 
weight sample that gives nearly the same distribution func- 
tion as that of the adjusted data. The equal-weight obser- 
vations are defined by Yij = F1[(nk)->(sij - .5)] for 
i = 1,2,.. ., nandj = 1, ..., k, where sij is the rank of the 
Yi*. These adjusted, equal-weight intakes Yij are hereafter 
called daily intakes. 

2.5 Semiparametric Transformation to Normality 

The first step to transforming the daily intakes to normal- 
ity is to calculate normal scores Uij, as defined in (2) for the 
Yij. The pairs (Uij, Yij) are used to estimate a semiparamet- 
ric function that transforms the daily intakes into approx- 
imately normal variables. The transformation function is 
fit to the data in two phases. First, a power is determined 
that produces observations that are close to normally dis- 
tributed by minimizing (1), where wi -1 and Yij replaces 

Woij. Let the selected power be denoted by a . The inverses 
of the powers of the first transformation step for the CSFII 
data are given in the first column of Table 2. 

In the next phase of the normality transformation, a 
grafted cubic polynomial is fit to the (Uij, Yi ) pairs, min- 
imizing deviations in the Y direction. Let the join points 
for the polynomial be Bl, B2,..., Bp. The values of B1 
and Bp are chosen such that two data points are outside of 
each of the outside join points. For our data, B1 and Bp 
are -3.26 and 3.26. The values B2,..., Bp_1 are defined 
such that the intervals (Bi, Bi+1), i = 1, 2, ... .,p- 1 are of 
equal length. The function is constructed to be linear for 
Uij < B1, linear for Uj > Bp, and cubic in the intervals 
(Bi, Bi+ 1), i = 1, 2,. .., p - 1, with continuous first and sec- 
ond derivatives at the join points. (See, e.g., Fuller 1976, p. 
393, for a description of the function.) The fitted grafted 
polynomial function is also constrained to be monotone in- 
creasing. At least three join points are included in the model 
for each component. The number of parameters, p, in the 
grafted polynomial model is equal to the number of join 
points. 

The number of join points for the grafted cubic is chosen 
to be the minimum number of join points (up to 12) required 
to make the value of the Anderson-Darling test statistic 
for normality less than .58 when applied to the data trans- 
formed by the semiparametric function. The Anderson- 
Darling test was chosen as a "goodness-of-fit" criterion to 
measure the distance between the distribution of the trans- 
formed observations and the normal distribution (see An- 
derson and Darling 1952 and Stephens 1974). The value 
of .58 is approximately the 15% point of the distribution. 
Using the 15% point as the cutoff is analogous to adding a 
variable to a regression when the F statistic exceeds 2 and 
is also analogous to using the Akaike information criterion 

Table 2. Statistics for the Semiparametric Transformation to Normality 

t for 
Dietary Inverse of Anderson-Darling for Number of join heterogeneous t for 

component power fitted valuesa points variancesb linear effectb 

Calcium 3.5 .28 3 2.72 -1.80 
Energy 2.0 .47 4 2.46 -.02 
Iron 2.5 .40 5 2.22 -.50 
Protein 2.0 .21 6 2.01 .57 
Vitamin A 5.5 .36 11 3.28 -.96 
Vitamin C 3.5 .34 8 2.06 -1.47 

a Reject at the 15% level if the Anderson-Darling statistic is greater than .58. 
b Reject the null hypothesis of zero slope at the 5% level if I ti > 1.96. 
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Figure 1. Plot of Grafted Polynomial for Iron. The plot of power- 
transformed daily intakes versus normal scores is represented by points. 
The smooth line is the fitted grafted polynomial. Vertical dashed lines 
designate join points of the grafted polynomial. 

(AIC) (see Sawa 1978 and Sawa and Hiromatsu 1973). The 
Anderson-Darling statistic computed for the daily intake 
data transformed with the grafted polynomial is given in 
the second column of Table 2. The number of join points 
is given in the third column of Table 2. 

Figure 1 contains a plot of the (2.5)-1 power of the iron 
daily intakes against the normal scores. The S-shaped plot 
indicates that a simple power transformation is not adequate 
to transform the plot into a straight line. Note that there are 
2,948 observations in the figure, with 2 to the left of the left 
join point and 2 to the right of the right join point. Because 
the function is constrained to be linear beyond the outside 
join points and because the function has a continuous sec- 
ond derivative, it is possible that the fitted function will not 
pass through the extreme observations. 

Although the total set of observations is transformed to 
normality, it does not follow automatically that the indi- 
vidual means are normally distributed. The normality of 
individual means is of interest, because their distribution 
is more closely related to the distribution of usual intakes 
than that of the original observations. Because of this, as 
an additional check on the transformation, the Anderson- 
Darling statistic was computed for the individual means of 
the transformed daily intakes. In no case was the statistic 
significant at the 10% level. 

To check the hypothesis that the within-individual vari- 
ances calculated from the transformed daily intake data are 
constant over individuals, let 

k 

Ai =(k - )-1 ij xi.) 
j=1 

and 
n 

M4= 3A2- [1 + 2(k -1)-1]-1Ai, (4) 

where Xij is the transformed value for individual i on day 
j,Xi. = k-1 jk=1 Xij,A =n1 Zn =1 Ai, and k = 4 is the 
number of observations per individual. If the transformed 
observations are normally distributed with homogeneous 
variances and four observations per person, M4 estimates 
3, the fourth moment of the standard normal distribution. 
The approximate variance is 

V(M4) = 9n (k - + 2(k -)-l]-2 

x [24 (k 
- 

1 y (k ? 1 )] 

- [2(k - 1) + (k - 1)2]2, 

which is equal to .039077 for n = 737 and k = 4. The 
values of the test statistic 

[V(fy4)] 
-1,2 

(fj4 - 3) 

calculated using the transformed daily data is given in Ta- 
ble 2 under the heading "t for heterogeneous variances." 
This ratio is greater than 1.96 for all nutrients analyzed, 
indicating that the within-individual variances vary across 
individuals. 

To investigate the hypothesis that the heterogeneity of 
within-individual variances in the transformed space is due 
to a relationship between within-individual standard devia- 
tions and individual means, the model Ail/2 = 0 + f31Xi. 
was fit using least squares. The t statistics for testing the 
hypothesis that 31 = 0 are presented in column 4 of Table 
2. The statistic for calcium is -1.80, whereas the remaining 
statistics are less than 1.5 in absolute value. When within- 
individual standard deviations are plotted against individual 
means, no obvious patterns are revealed. Therefore, it was 
decided to complete the analysis for all nutrients under the 
assumption that the variances are not related to the means. 

2.6 Estimating the Usual Intake Distribution in the 
Normal Scale 

A measurement error model is used for estimating the 
distribution of usual intakes in the normal scale. Let 

xij= xi + uij, (5) 

where xi NI(uxa, as),uij N(O, N o), 2 
2i (IA, CA): Xi 

is the unobservable usual intake value for individual i in the 

Table 3. Estimated Moments for Normal-Scale Daily Intakes, X,, 

Among- Average within- Within- Variance of 
individual individual to among- individual 

Dietary variance variance ratio variances 

component Q>2 AA A aA 

Calcium .367 .635 1.73 .072 
Energy .378 .626 1.66 .064 
Iron .318 .685 2.15 .069 
Protein .273 .728 2.67 .070 
Vitamin A .261 .742 2.84 .1 19 
Vitamin C .320 .684 2.14 .064 
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Figure 2. Estimated Densities of Usual Intakes (Usual; Solid Line), 
4-Day Individual Means (Mean; Long-Dashed Line), and 1-Day Intakes 
for Vitamin C (Daily; Short-Dashed Line). 

normal scale, uij is the unobservable measurement error 
for individual i on day j in the normal scale, the uij are 
independent given i, and xi and ulj are independent for all 
i,l, and j. 

On the basis of the empirical analyses presented in Ta- 
ble 2, we permit heterogeneous within-individual variances. 
The errors uij represent variation of two kinds: the day- 
to-day variability in the true amounts eaten by individual 
i and the difference between the true amount eaten and 
the amount reported for an individual. It is believed that 
the day-to-day variance for an individual is much larger 
than the variance of the reporting error. The transformed 
daily intakes Xij have ,ux 0 and a>-1. Under model 
(5), the conditional distribution of Xij, given (xi, ca2) is 
N(xi, 2I). However, the unconditional distribution is not 
normal if CA > 0. We conduct our analysis under the oper- 
ational assumption that the initial transformation produces 
xi and uij satisfying (5). Under (5), the individual means, 
Xi. = k-1 Ej=1 Xij, are independent (0, ax) random vari- 
ables, where crk = 52 ? k11,UA. For our purposes, it is 
not necessary to specify a form of the distribution of the 
individual error variances, because we will only use the 
variance of the distribution of variances. 

Table 4. Estimated Moments for Usual Intakes 
in the Original Scale, yw 

Dietary Standard 
component Mean deviation Skewness 

Calcium (mg) 622.4 240.0 .84 
Energy (kcal) 1,684.5 443.9 .54 
Iron (100 mg) 1,107.4 305.9 .75 
Protein (10 g) 670.0 160.1 .52 
Vitamin A (kg RE) 822.0 536.3 2.64 
Vitamin C (10 mg) 791.2 397.2 1.08 

Estimators for the moments are 
n 

=n- 1E X I-x X11 

i=1 

n 

= (n-1 1E (Xi. -x), 
i=l1 

n *k 

AA = [n(k - 1)]-1 E E (Xij -X7,.)21 

i=1 j=1 

=2 = -k-IAA 

and 
n 

A= n-'[1 + 2(k - 1)-i] ZAi - A2, 
i=l1 

where Ai and A are defined in (4). The within- and among- 
individual variances for the transformed data are given in 
Table 3. In all cases the sum of the within-individual and 
among-individual variances is close to 1, because the trans- 
formed data have mean 0 and variance 1. The average of the 
within-individual variances exceeds the among-individual 
variance for all dietary components. The ratio of within- 
to among-individual variance is smallest for energy with a 
value of 1.66 and is largest for vitamin A with a ratio of 
2.84. The ratios of within- to among-individual variance of 
Table 3 are similar to the corresponding ratios computed 
from the standard deviations in original scale of Table 1, 
with the exception of vitamin A. In the original scale, the 
vitamin A data are skewed, the individual standard devi- 
ations are positively correlated with the individual means, 
and a few very large observations made a large contribution 
to the within-individual variance in the original scale. 

The last column of Table 3 contains an estimate of the 
variance of the individual variances, denoted by &2. The 
coefficients of variation of the individual variances are 
36%-46%. 

2.7 Estimated Usual Intake Distribution in the 
Original Scale 

Under model (5), the conditional distribution of observed 
daily intakes in the normal scale for all individuals with a 
particular usual intake, say xi, is the average of all normal 
distributions with common mean xi and variance A, where 
A -(,A, CA ). Thus daily intake in normal scale is the sum 
of xi and u, where 

E{(u u2 U, I4)IX = X= (0, PA, 3_2 + 3c2) 

and the distribution of u is symmetric about 0. 
Let ji denote the usual intake in original scale for all 

individuals with usual normal intake xi, and let g denote 
the transformation taking the adjusted observed intakes Y 
to normality. Then 

jji = E{YIx = x}= E{g-1(x ? u)Ix = x}= hx) 
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Table 5. Sample Moments for Individual 4-Day Means in the 
Original Scale, Calculated From Daily Intakes, Y,J* 

Dietary Standard 
component Mean deviation Skewness 

Calcium (mg) 622.3 295.3 1.18 
Energy (kcal) 1,683.4 532.9 .70 
Iron (100 mg) 1,105.3 387.7 1.17 
Protein (10 g) 668.8 208.4 .89 
Vitamin A (,Lg RE) 800.8 864.9 7.17 
Vitamin C (10 mg) 792.4 515.6 1.24 

NOTE: Data are adjusted for day-of-week and interview sequence effects. 

The transformation h is estimated by approximating the 
conditional expectation of Y at a set of values of x and then 
fitting a grafted polynomial to the (y, x) pairs. The set of x 
values is a set of 400 values such that the first five moments 
of the points match the first five moments of a N (0, a^') dis- 
tribution. At each value of x, we use a nine-point approx- 
imation to the distribution of u. The distribution of u has 
mean zero and a variance with estimated mean &J. and esti- 
mated variance of variance equal to AA. Nine points, cl, and 
nine weights, Wl, where E w- 1, are constructed such that 
the first five moments of the discrete nine-point distribution 
match the first five estimated moments of the conditional 
distribution of x + u conditional on x. For each of the 400 
values of x, the usual intake in the original scale is approx- 
imated by i. _= E 4_wlg1 (Si + cl), where x is the ith 
value in normal scale and cl and W, (1 = -4,-3, ... , 4) are 
the values and weights for the nine-point approximation to 
the distribution of u. The 400 y values provide a 400-point 
estimator of the usual intake distribution. A grafted cubic 
created from the pairs ( denoted by h, is an estimator 
of the transformation of the normal x into the usual intake 
y in the original scale. 

Densities for the dietary components were constructed 
by multiplying the derivative of h- (y) by the normal or- 
dinate for the usual intake density of the component in the 
normal scale. The estimated density of usual intakes for vi- 
tamin C is the solid line in Figure 2. Also in the figure is the 
estimated density for daily intakes, identified by the short 
dashed line, and the estimated density of the 4-day means, 
identified by the long dashed line. The estimated density 

for 4-day means was approximated by applying the same 
smoothing algorithm used to estimate the distribution func- 
tion of daily intakes to the individual means. The skewness 
in the density of the mean declines as the number of daily 
intakes in the mean increases. 

Table 4 contains the mean, variance, and skewness coeffi- 
cient for the estimated usual intake distributions calculated 
from the 400-point approximation. The estimated means of 
the usual intakes are very close to the means for the daily 
intakes adjusted for nuisance effects and time-in-sample ef- 
fects (Yi*) presented in Table 1. Also, the estimated stan- 
dard deviations of usual intakes are close to the among- 
individual standard deviations of Table 1 for calcium, en- 
ergy, iron, and protein. This is to be expected, because the 
estimates of Table 1 are the sample moment estimators of 
the same quantities. The estimated standard deviations of 
usual intakes for the two vitamins differ considerably from 
the direct moment estimators of Table 1. As previously 
mentioned, the original distributions for the vitamin daily 
intakes are very skewed and, hence the original sample mo- 
ments are heavily dependent on a few large observations. 
The effect on the large observations is reduced for estima- 
tors constructed using our procedure. 

Comparison of the sample moments for usual intakes in 
Table 4 with the estimated moments for individual means 
(Table 5) indicates that the distribution of 4-day means is 
a poor estimate of the usual intake distribution. For all di- 
etary components, the standard deviation and skewness co- 
efficient are larger for the mean distribution than for the 
estimated usual intake distribution. 

Table 6 contains estimated percentiles for the usual in- 
takes of six dietary components. The percentiles were com- 
puted with the estimated transformation function using the 
percentiles of the estimated distribution of usual intakes in 
normal scale. For example, the estimated mean and vari- 
ance of vitamin C usual intakes in the normal scale are 
zero and .320. Therefore, the estimated 95% point in the 
normal scale is 8,xr-1(.95) = .566 x 1.645 = .931. Using 
the estimated h transformation, the 95% point of the usual 
intake distribution in original scale is 154.7 mg. 

A balanced repeated replication method was used to esti- 
mate the standard deviations of the estimated percentiles 

Table 6. Estimated Percentiles for Usual Intake Distributions in the Original Scale 

Percentile 

Component .01 .05 .10 .50 .90 .95 .99 

Calcium (mg) 208 292 345 590 942 1,065 1,326 

(14) (13) (13) (13) (32) (41) (64) 
Energy (kcal) 796 1,023 1,151 1,648 2,262 2,469 2.911 

(38) (34) (33) (36) (56) (66) (95) 
Iron (100 mg) 527 670 751 1,074 1,504 1,657 1,998 

(27) (26) (26) (30) (52) (63) (91) 
Protein (10 g) 349 431 477 658 878 951 1,108 

(18) (17) (17) (15) (21) (26) (39) 
Vitamin A (Mg RE) 218 312 372 671 1,449 1,837 2,876 

(16) (18) (19) (35) (134) (200) (442) 
Vitamin C (10 mg) 184 287 356 717 1,328 1,547 2,014 

(16) (19) (21) (33) (61) (72) (97) 

NOTE: Values in parentheses are estimated standard errors. 
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Figure 3. Plot of Function Used to Generate Original Scale Daily 
Intakes From Normal Daily Intakes for Simulation. 

(see, e.g., Fay 1989 and Wolter 1985). The sample is a 
stratified sample with two primary sampling units per stra- 
tum. Some strata were combined to create a sample of 
48 strata, each with two primary sampling units. Sixteen 
replicates were created based on orthogonal contrasts. Each 
replicate contains one-half of the data. All operations, in- 
cluding the power and grafted polynomial estimation, were 
carried out for each of the replicate samples. The esti- 
mated standard errors of the estimated percentiles, given 
below the estimates in Table 6, are the square roots of 
V{Oo} = (16)-' Zjj(Oi - Oo)2, where 0i is the estimated 
percentile for the ith replicate and 00 is the estimate for the 
original sample. 

3. MONTE CARLO STUDY 

We conducted a Monte Carlo study to evaluate the per- 
formance of the estimation procedure described in Section 
2 and to compare our method with two other procedures. 
The first alternative procedure for estimating the distribu- 
tion of usual intakes is comprised of the following steps: 

1. Power transform the daily intakes, where the selected 
power is chosen to minimize the Anderson-Darling sta- 
tistic. 

2. Compute the mean daily intake for each individual 
using the transformed data. 

3. Shrink the individual means of the transformed data 
for individual i as follows: xij = /A ? & &(Xi. -Ax) 
where fx is the mean of the transformed observations, &Z 
is the estimated variance of the transformed means, and 
&2 is the estimator of the among-individual variance. The 
shrunken means have the mean and variance of the usual 
distribution in the transformed scale. 

4. Back-transform the shrunken means to the original 
scale using a Taylor series approximation to adjust for bias 
when applying the inverse nonlinear transformation to usual 
intakes. 

5. Estimate the cumulative distribution function of usual 
intakes from the back-transformed shrunken means by the 
empirical distribution function. 

This procedure is an extension of the suggestions of the Na- 
tional Research Council (1986). Because the primary differ- 
ence between the procedure described above and our pro- 
cedure of Section 2 is in the transformation of step 1, we 
call the outlined procedure the best power procedure. 

The second alternative procedure for estimating usual in- 
take distributions is based on the smoothed empirical dis- 
tribution of individual mean intakes. This method has been 
used in the past by practitioners and is expected to do poorly 
in the tails, because of the presence of within-individual 
variation in the distribution. 

In the simulation, a true usual intake distribution was 
generated that displays distributional characteristics similar 
to those of protein. Protein is in the center of the compo- 
nents studied with respect to skewness and with respect to 
number of join points. For each of 1,000 samples, an ob- 
servation Yij for the jth day (j = 1, 2) on the ith individual 
(i = 1, ... , 700) was generated as follows: 

* Draw xi, the individual's usual intake in normal scale 
from a N (0, .36) distribution. 

* Draw a2, the measurement error variance, from a uni- 
form distribution on the values .32, .50, .64, 1.1. The 
measurement error variance distribution has mean .64, 
and variance .0834. 

Table 7. Estimates of Selected Percentiles of the Usual Intake 
Distribution Using Three Estimation Methods, Averaged Over 

1,000 Simulations 

Estimation method 

Percentile True Spline Best power 2-day mean 

.01 81.85 81.85 79.31 67.56 
(.076) (.103) (.108) 
[2.402] [4.142] [14.690] 

.05 91.86 91.88 92.03 83.40 
(.052) (.062) (.059) 
[1.638] [1.952] [8.659] 

.10 96.99 96.91 97.97 91.02 
(.043) (.048) (.045) 
[1.355] [1.805] [6.138] 

.25 105.44 105.27 106.18 101.99 
(.033) (.036) (.035) 
[1.057] [1.351] [3.625] 

.50 115.03 115.03 115.17 114.49 
(.029) (.032) (.033) 
[.931] [1.011] [1.176] 

.75 125.23 125.49 124.61 127.77 
(.039) (.039) (.040) 
[1.255] [1.390] [2.831] 

.90 135.42 135.70 134.13 141.62 
(.058) (.060) (.065) 
[1.843] [2.290] [6.527] 

.95 142.23 142.47 141.50 152.69 
(.075) (.083) (.095) 
[2.395] [2.732] [10.871] 

.99 157.00 157.48 159.27 180.05 
(. 128) (. 157) (.208) 
[4.080] [5.467] [23.956] 

NOTE: Values in parentheses are estimated standard errors for the Monte Carlo mean per- 
centiles. Values in brackets are estimated RMSE's. 
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Figure 4. Average Estimated Root Mean Squared Error in Estimated 
Percentiles From 1,000 Simulation Runs, for the Proposed (Spline; Solid 
Line) and Best Power (BP; Dashed Line) Estimation Methods. 

Draw the measurement error uij from a normal distri- 
bution with mean zero and variance 021, for j = 1, 2, 
and form Xij = xi + uij, where Xij is the daily 
intake in normal scale. If Xij falls below -6.97, then 
Xij is set equal to -6.97. 

Let Yij L2j5 be the daily intake in the original scale, 3 i3 
where Lij is a grafted cubic function of Xij. The definition 
for Lij is such that no power of the generated intakes is 
normally distributed. The function relating Yij and Xij is 
presented in Figure 3. 

We computed 291 percentiles of the estimated usual in- 
take distributions using the three procedures, and averaged 
these over the 1,000 samples. The set of percentiles is de- 

3 
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Figure 5. Absolute Average Estimated Bias From 1,000 Simulation 
Runs, for the Proposed (Spline; Solid Line) and Best Power (BP; Dashed 
Line) Estimation Methods. 

fined by the 41 percentiles .01, .025 to .975 by .025, .99, 
plus percentiles corresponding to 250 equally spaced prob- 
abilities. The estimated percentiles were compared to the 
percentiles of the true usual intake distribution, generated 
by numerical integration. Results for selected percentiles 
are shown in Table 7. The estimated root mean squared 
error (RMSE) and the absolute value of the average esti- 
mated bias are plotted against each of the 291 percentiles 
for the three estimation methods in Figures 4 and 5. The 
RMSE and, to some degree, the bias are larger in the tails 
than in the center of the distribution for all procedures. 
Although all three methods display some bias, the method 
proposed in Section 2, called "spline" in the table, produces 
estimates of percentiles that are nearly always less biased 
than the other two methods. The spline method generally 
has smaller standard errors than the best power procedure, 
especially in the tails, and is uniformly superior to the best 
power procedure with respect to MSE for all 291 percentiles 
calculated in the simulation. As expected, the method pro- 
posed in Section 2 provides less biased and less variable 
estimates than estimates based on individual means of the 
2 days. The distribution estimated using individual means 
is comparable to the other procedures only for percentiles 
near the mean of the usual intake distribution. 

To investigate the performance of the balanced repeated 
replication variance estimation procedure, the 700 individ- 
uals in each sample were randomly assigned to 32 approxi- 
mately equal sized clusters in 16 strata containing 2 clusters 
each. Variances based on the 16 balanced replicates were 
computed for the quantiles and confidence intervals cal- 
culated. The coverage of the nominal 95% intervals were 
.959, .964, .967, .963, .958, .943, .941, .943, and .948 for 
the .01, .05, .10, .25, .50, .75, .90, .95, and .99 percentiles. 
As these coverages suggest, the replication variances aver- 
aged somewhat larger than the Monte Carlo variances for 
the first three-fourths of the quantiles and somewhat less 
than the Monte Carlo variance for the larger quantiles. The 
general performance of the replication intervals was judged 
satisfactory, although the coverage of some intervals differs 
significantly (at the 5% level) from the 95% nominal level. 

4. COMMENTS 

We have presented a method for estimating distributions 
of usual intakes based on daily intakes of dietary compo- 
nents consumed almost every day. This method is applicable 
more broadly to settings where the distribution of nonnor- 
mal unobservable means is of interest, and the observed 
data are repeated measurements on a sample unit that mea- 
sure the sample unit's mean with considerable error. An 
example of such a problem is determining an individual's 
average blood pressure using multiple measurements. 

This approach is being extended to estimating usual in- 
take distributions for dietary components that are not con- 
sumed daily, such as individual foods. The daily intake data 
for such components contain numerous zeros from individ- 
uals who never consume the food and from those who did 
not eat the food on the sample days. Nusser et al. (1997) 
proposed methods for estimating the usual intake distribu- 
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tion for foods when usual intakes are uncorrelated with the 
frequency of consumption. 

In addition, distributions of usual intakes of ratios of di- 
etary components, such as percent calories from fat, are 
of interest. When both the numerator and denominator in 
the ratio are observed with error, the methods presented 
in this article are not directly applicable. A modification 
to the approach that is suitable for estimating distributions 
of usual ratio intakes was presented by Carriquiry, Fuller, 
Goyeneche, and Dodd (1995). 

[Received November 1991. Revised May 1996.] 
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